Unit 1

Unit 1
Binary Basics

Unit Objectives

After completion of this unit you will be able to identify and describe the following concepts:
Numbering systems—base 10 (decimal), base 2 (binary) and base 16 (hexadecimal)
Conversions among various number systems—binary, hexadecimal and decimal

Math functions (addition, subtraction, multiplication and division) with binary numbers
Recognize various logic gates and their functions and develop truth tables for them
Develop truth tables for various logic circuits

G

I-1 Numbering Systems and their uses

The numbering system in general use is the base 10 system, probably because we have used our
10 fingers for counting since the early days of man. Di gital computers operate on the principles
of semiconductor circuitry switching between 2 states—on and off. These two states can be
represented as a “1” or a “0”. Since there are only two states to be considered, a base 2 system is
used. This base 2 numbering system is referred to as the binary system and is the language of
computers.

1-1.2 Notation Review—Exponents and Subscripts

When dealing with large values, such as 10,000,000 ohms of resistance, it is easier to write the
value as 10° ohms. This form of number shorthand is called scientific notation. Using scientific
notation requires an understanding of the powers of fen. The number 10,000,000 can be seen as
the value of 10 raised to the 6 power, or 10- 10 - 10 - 10 - 10 - 10 or 10°. So, 10" is 10
multiplied by itself N times. The following table illustrates how a value is converted to scientific
notation. The number used in the following example is 832,129.

Number _ 8 3 2 1 2 9

Power of Ten 10° (100,000) | 10*(10,000) | 10° (1,000) [107 (100) | 10" (10) 10° (1)

As we move from right (starting at 10° or 1) to left, the powers of ten increase. The highest
power of ten in this case is 10°, so we move the decimal point 5 places to the left.

8.32129

B e P R R
5 4 3 2 1

We now re-write the value in scientific notation: 8.32129 - 10°.

Unit 1

Actually, raising any number to a power is a statement of the number of times that a number is
multiplied times itself. Scientific notation uses the base 10 number system. Since we will also
be using a base 2 system, let’s consider powers of 2. The following table shows values for
powers of 2 from 2° to 2%,

[Power of Two [27256) [2(128) | 2°(84) [2°(32) [2°(16) [2°(®) [Z(4) [2D [()]

As with powers of ten, 2" is 2 times itself N times.
Example: 2°=2.2.2.2.2.2=64

As you have seen, the power a value is raised to is illustrated with a superscript—value™.
Another form of notation is the subscript—valuey. The subscript is often used in schematic
drawings to represent specific components: R), Cs, etc. It can also be used to represent the base
of a numbering system. An example of this would be the number 259. When you see this
number you assume that it is a base 10 (Decimal) value, but it could also be a base 16
(Hexadecimal) value. To make sure which number system is being used, a subscript is attached
to the value. As illustrated below, the use of this notation avoids confusion when using different
numbering systems.

259;0= Base 10 value or 259,; = Base 16 value

1-1.3 The Decimal (base 10) Numbering system

We are all familiar with the base 10 numbering system, so we will start with it as the basis for
explaining other numbering systems. The base 10 numbering system consists of ten possible
digits: 0, 1,2,3,4,5,6,7,8,0or 9. When placed together in a multi-digit number, each digit has
a weighting factor based on a power of 10 (10*). The lowest value of weighting factor is the
right-most number, and the highest value of weighting factor is the left-most number. Consider
the number “36258”. The right-most value of “8” has a weighting factor of 10° and the left-most
value has a weighting factor of 10°. Let’s consider the weighting factors for each digit position
from MSD (Most Significant Digit) to LSD (least Significant Digit).

Place Value MSD 4SD 3SD 2SD | LSD
Number 3 - 6 2 5 8

Weighting Factor | 10" (10,000) | 10° (1,000) | 10° (100) | 10" (10) | T0° (1)
Number e Weighting | 30,000 6,000 200 50 8

Note: The weighting factor values in parentheses are the actual values of 10 raised to the power shown.
In order to determine the value we must now add the weighted numbers together.
30,000 + 6,000 + 200 + 50 + 8 = 36,258

We normally don’t go through this effort when using the decimal system because it is our normal
numbering system and we automatically understand that the left-most value is the greatest and
the right-most value is the least. This weighting example using the familiar decimal numbering
system is provided because the same concept applies to other numbering systems as well.

Unit 1

1-1.4 The Binary (base 2) Numbering System

As previously mentioned, the binary numbering system is used in digital electronics because
there are only two digits to be considered: 0 and 1. These two values are represented by the
on/off, voltage/no voltage conditions in electronic circuits. Logically they can represent yes/no
or true/false conditions.

Why use binary numbers? Because there are only two values, binary numbers are easy to store
and simple fo transport over long distances. When processed, binary information can represent
instructions or values. Although binary values can be of any length, we often see them in groups
of eight (referred to as “bytes” or “octets”).

When using binary numbers it is important to note that the maximum number of combinations of
1s and Os is a function of the number of places in the group of binary numbers. When binary
numbers are grouped into octets, for example, the maximum number of values that can be
represented will be 28 or 256 values ranging from 00000000 to 11111111, The following is an
example of bits arranged into octets:

00110100 10111011 01011001 10101011 01101110

Being human, these numbers hold no significance for us. They could represent amplitude values
for digitized voice or instructions for processing information or alphabet characters to be
displayed on a computer screen.

1-1.5 The Hexadecimal (base 16) Numbering System

We have seen the decimal numbering system and the binary numbering system. Why do we
need another numbering system? The hexadecimal system is actually an extension of the binary
numbering system that makes reading and interpreting long strings of binary numbers simpler for
humans. Computers still read binary values, but we use hexadecimal as a sort of shorthand when
we have to read binary values in 8, 16 and 32 bit sequences. . The base 16 numbering system
consists of sixteen possible digits: 0, 1,2, 3,4, 5, 6,7, 8,9, A, B, C, D, E, F. Notice that since
this is a base 16 numbering system, when 9 is reached there are still six more values to be
counted before moving to the left and repeating the lower values. The letters A through F were
chosen to represent the last six values in a hexadecimal numbering system. The following is an
example of hexadecimal numbers representing the eight bit sequences shown in section 1-1.3:

34 BB 59 AB 6E

Hexadecimal, as you can see, takes up less space than binary values. And, believe it or not, they
are easier for humans to read once you get the hang of it. We are often given instructions for
programming physical switches, or setting other equipment parameters, in hexadecimal
(typically referred to as just “Hex”") form.

Unit 1

1-2

Converting between numbering systems
When dealing with any of the three numbering systems we have been considering, we must

sooner or later have to convert from one to the other. We will take a look at the processes
involved in this section.

1-2.2 Binary to Decimal Conversion
Converting from binary to decimal is a fairly simple task. It is essentially a three-step process
similar to the decimal example (section 1-1.2) only with 2* instead of 10*:
1. Weight the values of each position with powers of 2—right-most position being LSD and

left-most position being MSD
2. Multiply weighted values by the binary value at that position (1 or 0)

3 Add the values together

Let’s try the process to convert the binary value of 10100010 to decimal form.

Place Value MSD 7SD 6SD 5SD 4SD 3SD 2SD | LSD
Number 1 0 1 0 0 0 1 0
Weighting Factor | 2/ (128) | 2°(64) | 22(32) | 2°(16) | 22(8) | 2@ | 2'(@» | 2°(D)
Number o Weighting | 128 0 32 0 0 0 2 0
Note: The weighting factor values in parentheses are the actual values of 2 raised to the power shown.

In order to determine the decimal value we must now add the weighted numbers together.
128 + 0 + 32 + 0 + 0 + 0 + 2 + 0= 162

So, we can see that the binary value of 10100010 converts to a decimal value of 162. You may
have noticed that the multiplication step is not necessary when dealing with binary values. A
simpler way to convert might be to binary weight the positions and add the weighted values
together of any position with a binary value of 1.

Binary to Decimal Conversion Examples:
1011=2+0+2'+2°=8+0+2+1=11
0110=0+22+2'+0=0+4+2+0=6

1111=2°+22+2"+2°=8+4+2+1=15

Exercise 1-1: Binary to Decimal Conversion

1. 10110111 2. 100111 3. 01110 4. 011010

5. 1011110010 6. 1001 7. 11100100 8. 100001

Unit 1

1-2.3 Decimal to Binary Conversion
Converting from decimal to binary is a different process. Decimal to binary conversion is

accomplished by successive division of the original decimal value by 2. The binary value is
determined by a remainder test after each division.

Let’s look at the steps involved in conversion from decimal to binary.
Divide the number to be converted by 2
Test for a remainder of the division: yes=1,no=0
Divide the quotient of the previous division by 2
Continue steps 2 and 3 until 1 + 2 is reached
Determine the binary value of the number:
MSD = remainder test of first division
LSD = remainder test of last division

LUV, T O S Y N

Using the decimal value of 162 from the binary to decimal conversion section we will now
perform a decimal to binary conversion.

Operation | Result | Test for Remainder
(yes=1,n0=0)

162 +2 81 0 LSD
81 =2 40 |1
40+ 2 20 0
20 +2 10 {0
10 =2 3 0
5+2 2 1
2+2 1 0

1+2 0 1 MSD

Reading the remainder test from bottom (MSD) to top (LSD) we get 10100010. Another
technique when converting smaller values is to add binary weight values together to reach the
decimal value and then replace them with a | in the proper position.

Example: Converting decimal value 25 to a binary value using by adding 2* values

2510=16+8+1=2+2%4+2=244+ 23+ 0+ 0+2°=11001

Exercise 1-2: Decimal to Binary Conversion

1: 12 2. 154 3. 86 4. 319
5. 27 6. 63 1.79 8. 36

Unit]

1-2.4 Binary to Hexadecimal Conversion
As previously stated, reading and interpreting groups of binary numbers is a difficult task for
humans. Therefore we commonly see these binary values after they have been converted to
something easier to read. The hexadecimal numbering system is quite often used for this
purpose, but upon occasion we still have to perform conversion from binary to hexadecimal all

by ourselves.

The process of converting from binary to hex is simple and straightforward. It is a three-step

process:

L Break the binary value into groups of four (4) bits from right to left

2. Binary weight values (2°,2%,2' 2% of each individual 4-bit group

3 Add the binary weighted values together to determine which of the sixteen possible hex
values (0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F) is represented

Let’s look at a long binary value and convert to hex: 10000111010100100101101
Notice that converting this value to decimal would be a tedious task. So, let’s follow the three-

step process.
Binary Number 10000111010100100101101
1. 4-bit groups 0100 0011 1010 1001 0010 1101
2. Binary weighting | 0+440+0 | 0+0+2+1 | 8+0+2+0 | 8+0+0+1 | 0+0+2+0 | 8+4+0+1
3. Add to Hex Value - 3 A 9 2 D

Note: Leading Os are added to the left-most group to fill it out to four bits.

10000111010100100101101 = 43A92D¢

Exercise 1-3: Binary to Hexadecimal Conversion

1. 10101011

5. 10101010110

2. 001011

6. 11011101

3. 0110110

7.

1-2.5 Hexadecimal to Binary Conversion
As you may have guessed, going from hexadecimal to binary is basically the reverse of the

binary to hex process.

111001010

4. 1010110010

8. 101

Let’s look at a hexadecimal value and convert it to binary: A4893D

1010101

Hex Value A 4 8 9 3 D

1. Binary Weighting 8+0+2+0 | 0+4+0+0 | 8+0+0+0 | 8+0+0+1 | 0+0+2+1 | 8+4+0+1
2. 4-bit groups 1010 0100 1000 1001 0011 1101
3. Combine to binary value 101001001000100100111101

A4893D;s=101001001000100100111101

Unit 1

Exercise 1-4: Hexadecimal to Binary Conversion
Program the following switches with information supplied in Hex format. A binary 1 is an on
position and a binary 0 is an off position. Fill-in the circle at the proper switch position.

1. A6 2.
HEREEEEE |

4. A5D3 5.

dddedd

(o]
N

hubls]
[

1.2-6 Converting between Hexadecimal and Decimal
The last number conversion process we will consider is going from Hex-to-Decimal or Decimal-
to-Hex. When performing these conversions, you must first convert to binary and then convert
from binary to the other number system. Let’s use the number 36,0 and convert to its
Hexadecimal equivalent, and then 36,5 and convert to its Decimal equivalent:

3610 = 1001002 = 2416 and 3615 =001101 102 = 5410
You can see how important the subscript can be at times to avoid confusion when using different
number systems. The following table shows the relationship of the number systems we have
been considering. Notice that for values 0 through 9 both Decimal and Hexadecimal systems are
the same.

Conversion Table: Decimal, Binary and Hexadecimal

Decimal Binary Hexadecimal
0 0000 0
1 0001 1
2 0010 2
3 0011 3
4 0100 4
5 0101 5
6 0110 6
7 0111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

Unit 1

1-3 Binary math functions
In this section you will learn to perform basic binary math—addition, subtraction and
multiplication.

1-3.1 Addition of binary numbers

When adding binary numbers the method is the same as that used in other bases. Consider the
base 10 system. When we add two numbers we start at the right side and add the column values.
If the sum exceeds the single digit value of the base, a carry is generated to the next column.
Let’s add the decimal values 5678 and 2345.

Step 1. 8+ 5= 13 so we place a 3 in the right column and carry the 1 into the next column

Step 2. 1+ 7 +4 =12 so we will place 2 in the column and carry the 1 to the next column

Step 3. 1+ 6 +3 =10 so we will place 0 in the column and carry the 1 to the next column

Step 4. 1+ 5+ 2 =8 so the answer will be 8023

When adding binary values we do the same thing, only in the base 2 system the highest value in
a column is 1. Before we perform the binary addition let’s introduce the rules of addition.

0 + 0 always equals 0

0 + 1 always equals 1

1 + 1 always equals 0 and a carry

1 + 1 + a carry always equals 1 and a carry

g ok L e

Now let’s perform the binary addition of 1101 and 0111.

Step 1. 1+ 1=0and a carry so place a 0 in the first column and carry the | to the next column
Step2. 1+0+ 1=0 and a carry so place a 0 in that column and carry the 1 to the next column
Step3. 1+ 1+ 1=1 and a carry so place a 1 in that column and carry the 1 to the next column
Step4. 1+ 1+ 0=0and a carry so place a 0 in that column and carry the 1 to the last column

Decimal Addition Binary Addition

camy 1 1 1 carry 1 1 1
5678 1101
+2345 +0111
8023 10100

There is another way to perform binary addition. You just convert to decimal and add them, then
convert back to binary. Let’s use the previous addition example. Convert 1101 and 0111 to
decimal by binary weighting the positions: 8 +4+0+1=13jpand 0 +4+2+1="7y,. Now
add 7,0 and 130 together to get 20,o. Next convert 20, to its binary value: 10100

Exercise 1-5: Addition of binary numbers

L 0111 + 1011 2. 01101 + 101 3. 100110 + 11011

4. 10111 + 00111 3 11011 + 1001 6. 11101 + 101001

Unit 1

1-3.2 Modulo-2 Addition

Another type of binary addition is modulo-2 addition. This technique is performed in the same
way as binary addition except there is no carry performed. Consider the following example
comparing binary addition and modulo-2 addition of the same values.

Binary Addition Modulo-2 Addition Rules of Modulo-2 Addition
cary I 1 1
1101 1101 1. 0+ 0always equals 0
2. 0+ 1 always equals 1
+0111 +0111 3. 1+ 0 always equals 1

We will consider modulo-2 addition further in the logic gates section (section 1-4).

1-3.3 Subtraction of Binary Numbers

There are several methods for subtracting binary numbers. A simple approach is the one’s
complements method. The one’s complement of a binary number is simply the inverted value
of the binary number: 1s become Os and 0s become ones. The ones complement of 10110010
would be 01001101. When subtracting binary values using the ones complement method, the
subtrahend is inverted and then binary addition is performed according to the rules provided in
the last section. If a carry is performed in the left-most position, the carry will be brought down
(as illustrated) and a second addition will be performed. Let’s try it. Subtract 0111 from 1101.
Step 1. Perform the one’s complement of the subtrahend

Step 2. Perform addition according to the stated rules of binary addition

Step 3. IF there is a carry from the left-most column, add it to the sum obtained in steps 1 and 2

Step 1 Step 2

(minuend)

11 1101
(subtrahend) - 0 1 -1000

As with addition, another method would be to convert from binary to decimal values and
perform subtraction then convert the answer back to binary. Either approach is acceptable.

Exercise 1-6: Subtraction of binary numbers
1. 1011 - 0011 2 1101 - 0101 3. 101110- 01011

4. 10111 - 00101 = 11011 - 1001 6. 111101 - 101001

Unit 1

1-3.4 Multiplication of Binary Numbers

When multiplying binary numbers the best approach is to convert the binary numbers to decimal
values, perform multiplication and then convert them back to binary values. Let’s multiply 1011
times 0110.

Step 1. Convert both binary values to decimal values as shown in section 1-2.2

Step 2. Perform decimal multiplication

Step 3. Convert the decimal answer to a binary value as shown in section 1-2.3

Step 1 Step 2 Step 3
1011 8+0+2+1=11 11 Operation | Result | Test for Remainder
x0110 0+4+2+0=6 x6 e I N L

66 332 16 1
16 +2 8 0
8+2 4 0
4=2 2 0
2+2 1 0

1+2 0 1 MSD

Decimal 66 = Binary 1000010

Exercise 1-7: Multiplication of binary numbers

1. 1011 - 0110 2. 0111 - 1000 3. 1111 - 0001 4. 101-1110

10

Unit 1

14 Logic Gates

Logic gates are the fundamental building blocks of digital circuits. Complex digital circuits such
as flip-flops, shift registers encoders and decoders can be constructed using the basic gate
circuits presented in this section. This course does not address the complex digital circuits, only
the basic logic gates.

Remember, in the digital world we define only two states: on and off. So, before we look at the
gate circuits, let’s consider some of the terms used to define on and off. The following table
shows notations used with logic circuits.

Logic Circuit Notation
ON OFF
Closed Open
1 0
True False
High Low
+ Voltage 0 Voltage

Each type of logic gate has its own truth table associated with it. A truth table is a table that
shows all possible inputs to a logic gate and the output for a given set of input levels.

Logic gates can, and often do, have more than two inputs. As the number of inputs increases, the
number of possible combinations of inputs increases by 2" (x = number of inputs). A three input
gate would have 2° (eight) possible combinations of inputs and thus a larger truth table.

Consider the generic gates in figure 1.1.

4 Inputs = 2* Input 4-input I

1

Combinations Output
8 Inputs = 2° Input — .
Combinations _— 8-1nput AR Output

Figure 1.1 - Generic Gates

11

Unit 1

1-4.2 The AND Gate

The first gate circuit to be considered is the AND gate. The AND function is shown below in
Figure 1.2 using a simple circuit consisting of a battery, switches and a lamp. Notice that in
order for the lamp to be on, both switches must be closed. Adding more switches in series in the
AND function circuit is equivalent to adding more inputs to an AND gate. The truth table shows
all of the possible combinations of the two switches and the resulting lamp status. The AND

function can then be stated in the following way:

In order for the lamp to be on, borh the A switch AND the B switch must be closed.

Wil C@C

Figure 1.2 - The AND function

Switch A | SwitchB | Lamp C
Open Open Off
Open Closed Off
Closed Open Off
Closed Closed On
Truth Table for AND Function

The symbol for an AND gate is shown in Figure 1.3 below. A and B represent the input and C is
the output. Notice that because this is a 2-input AND gate the number of possible input

combinations is four.

In order for the output to be high, both the A input AND the B input must be high.

Truth Table for AND Gate
A Input A | Input B | Qutput C
B C 0 0 0
0 1 0
B | 1 0 0
1 1 1

Figure 1.3 - The AND Gate Symbol

Truth Table for AND Gate

12

Unit]

1-4.3 The OR Gate
As with the AND gate, the function of the OR gate can be represented by a circuit consisting of a

battery, two switches and a lamp (Figure 1.4). Adding more switches in parallel in the OR
function circuit is equivalent to adding more inputs to an OR gate. The truth table shows all of
the possible combinations of the two switches and the resulting lamp status. The OR function
can then be stated in the following way:

[

In order for the lamp to be on, either the A switch OR the B switch or both must be closed.

]

L

B

Figure 1.4 - The OR function

Switch A | Switch B | Lamp C
Open Open Off
Open Closed On
Closed Open On
Closed Closed On

Truth Table for OR Function

The symbol for an OR gate is shown in Figure 1.5 below. A and B represent the input and C is
the output. Notice that because this is a 2-input OR gate the number of possible input
combinations is four.

[

In order for the output to be high, either the A input OR the B input or both must be high.

]

A

B

Figure 1.5 - The OR Gate Symbol

Input A | Input B | Output C
0 0 0
0 1 1
1 0 1
1 1 1
Truth Table for OR Gate

13

Unit 1

1-4.4 The X-OR (Exclusive-OR) Gate

The Exclusive-OR gate is an OR gate that only provides a high output if one and only one of the
gates is high. As with the previous gates, the X-OR function can be represented by a circuit
consisting of a battery, switches and a lamp (Figure 1.6). The circuit shown only illustrates the
operation of a 2-input X-OR function. Since an X-OR gate is more complex than the AND or
the OR gate, the configuration of the circuit is a bit more complex. Notice that instead of just an
A switch and a B switch there is also an A’ and a B’ switch. The dashed lines connecting the
switches together indicate that they work together. In other words, closing the A switch will
cause the A’ switch to open. The truth table shows all of the possible combinations of the
switches and the resulting lamp status. The X-OR function can then be stated in the following

way:

l In order for the lamp to be on, only the A switch OR the B switch must be closed—not both.

@c

Switch A | SwitchB | Lamp C
Open Open Off
Open Closed On
Closed Open On
Closed Closed Off

Truth Table for X-OR Function

The symbol for an X-OR gate is shown in Figure 1.7 below. A and B represent the input and C
is the output. Notice that because this is a 2-input X-OR gate, the number of possible input
combinations is four. Since an X-OR gate can have more than two inputs the following

statement applies to only an X-OR gate with two inputs.

|

In order for the output to be high, only the A input OR the B input must be high—not both.

|

A

B

Figure 1.7 - The X-OR Gate Symbol

Input A | Input B | Qutput C
0 0 0
0 1 1
1 0 1
1 1 0

Truth Table for X-OR Gate

If you compare the truth table for the X-OR gate to the rules stated for Modulo-2 Addition
(section 1-3.2), you will notice that modulo-2 addition of binary values is the same as performing

an Exclusive OR of the values.

So far we have just considered 2-input X-OR gates. The following is a more general statement

regarding the X-OR function for any number of inputs.

[In order for the output of an X-OR gate to be high, one and only one of the inputs must be high. J

14

Unit 1

1-4.5 The Inverter

The Inverter, also referred to as the NOT circuit, inverts or complements an input. The symbol
for an inverter is shown in Figure 1.8. The Inverter function can then be stated in the following
way:

If the input is A the output is NOT A and conversely, if the input is NOT A the output is A.

A A Input | Output
1 0
0 1

Figure 1.8 - The Inverter Symbol Truth Table for an Inverter

The line above the output A indicates that it is the inverse of the input A.

The inverter is used to change the logic states on the input and/or output of logic gates. When
the inverter is added to a logic gate output it becomes a different logic gate. For example: An
inverter at the output of an AND gate will turn it into a NAND gate. When this is done at the
output of a gate the only portion of the inverter symbol that is used is the small circle at the
output point.

Consider the logic gates in Figure 1.9 and the effect of inverting their outputs:

AND Gate NAND Gate
OR Gate NOR Gate
X-OR Gate X-NOR Gate

>

Figure 1.9 Basic Logic Gates

13

Unit 1

Exercise 1-8: Logic Functions

1.
2.

What is the type of gate illustrated below?

Fill-in the associated truth table.

Truth Table

Output

D

Logic Gate for questions 1 and 2

—|=|=|=|olo|olok g
v—-v—-c::»o-—w—-oowg,

-—‘Or—-o.—-@.—non

Inverting the inputs of a 2-input AND gate will change it into another the type of gate.

What type of gate will it effectively become?

Perform the AND function on the following binary numbers. Treating each column
separately as A and B inputs, AND them together to a C output.

A 10011100
B 10001101
C

Perform Modulo-2 Addition (X-OR) on the following binary numbers—A and B.

A 10011100
B 10001101
@

Refer to the following logic gate.
How many input combinations will provide a high

output state?

How many input combinations are possible for this
gate?

16

Unit 1

1-5 Truth tables and logic circuits

As previously mentioned, logic gates can be connected together to perform many functions in
digital circuits. In troubleshooting, it is important to be able to follow a signal through these
digital circuits and accurately predict the proper output for a given input pattern.

In this section you will be performing signal tracing exercises with circuits that combine all of
the logic gates previously discussed. You will determine the output values at various points
along the circuit path for given input values. The solution will be presented on the next page.

Circuir 1

Refer to Figure 1.10 below. Inputs A and B have two separate signal patterns at

their input. As each bit flows into the A and B inputs determine what the level is at outputs C, D
and E. Remember: a zero level represents a binary 0 and a plus level represents a binary 1.

0 Volts

Circuit 2

0 Volts —————§
I

Figure 1.10

Develop a truth table for the circuit in Figure 1.11 showing all possible inputs at

A, B and C and the corresponding output at D.

w

v

@

Figure 1.11

— -
-

17

Unit 1

Circuit 1 Solution: Perform the logic function at each point of the circuit as shown.

Input A 1100 Input A 1100 Input C 0111
NAND InputB 1011 OR InputB 1011 NAND InputD 1111
= Qutput C 0111 =QOutput D 1111 = Qutput E 1000

In the drawing below, the binary values calculated for each gate output are represented by
voltage levels. For example: Output E is 1,0,0,0 or high, low, low, low

I
I

I |
0 Volts ——d sy

I
:A [
i C
I
I
I
|
;
[
I

0 Volts

L 11
sl
0 Volts +— |

Circuit 2 Solution: Since there are three inputs—A, B and C—there will be eight possible input
combinations from 000 to 111.

Things to consider in this circuit

L There is only one time that the NAND gate output will change to a low—when A, B and
C are all high
1. Since the X-OR input will have a high from the NAND gate output most of the time, the
output of the OR gate will control the output at D for seven of the eight conditions.
Truth Table
Inputs Output
A|lB|C D
0 |0 |0 0
0 [0 |1 0
0 1 0 1
0 1 1 1
1 0 |0 1
1 0 |1 1
1 1 [0 1
1 1 1 0

18

Unit 1

% %

IR RS

Unit 1 Summary

There are three common numbering systems: Base 10 (Decimal), Base 2 (binary) and Base
16 (Hexadecimal)

The base 10 numbering system consists of 0, 1, 2, 3, 4, 5, 6,7, 8, 9. The Least Significant
Digit (LSD) is the right-most digit.

The base 2 numbering system consists of 0 and 1. The Least Significant Digit (LSD) is the
right-most digit.

The base 16 numbering system consists of 0, 1,2, 3,4, 5,6, 7, 8,9, A, B, C, D,E,F. Itisa
shorthand technique for representing binary values.

There are techniques for converting among any of these three numbering systems.

There are techniques for addition, subtraction, multiplication and division of these number
systems.

There are three basic logic gates: AND, OR and X-OR.

All inputs to an AND gate must be high (binary 1) in order to have a high output.
If any of the inputs to an OR gate are high, the output will be high.

An X-OR gate output will be high if one, and only one, input is high.

The number of possible combinations in a truth table for a given gate is a function of the
number of inputs to the gate.

The purpose of this unit is to provide a general understanding of the subject areas
addressed. For more information on the topics covered in this unit, refer to the
Web sites and reference books listed in the Study Guide for the Digital
Communications and Computer Literacy Test.

19

Unit 1
ANSWERS TO UNIT 1 EXERCISES

Exercise 1-1: Binary to Decimal Conversion Answers

1. 10110111 =183 2. 100111=39 3. 01110=1 4. 011010=26

5. 1011110010 = 754 6. 1001 =9 7. 11100100 =228 8. 100001 =33

Exercise 1-2: Decimal to Binary Conversion Answers

It

1100 2. 154=10011010 3. 86=1010110 4. 319=100111111

1. 12

5. 27=11011 6. 63=111111 7. 79=1001111 8. 36 =100100

Exercise 1-3: Binary to Hexadecimal Conversion Answers

1. 10101011 =A6 2. 001011=B 3. 0110110 =36 4. 1010110010 = 2B2

5. 10101010110=556 6. 11011101=DD 7. 111001010=1CA 8. 1011010101 =2D5

Exercise 1-4: Hexadecimal to Binary Conversion Answers

1. A6 2. 38 3. 4F

Zz0o
z0
4o}

(s < R o s

mmo

ERTe)
O ®
@0

| O ®
e O
@
D@
0 @
@
mQ

4. A5D3 ' 5. 7E

Z0o

z0
heTe)
@ O
0 @
D @
D@
0 @
L@

S Ml

mnTo

Exercise 1-5: Addition of binary numbers Answers
1. 0111+ 1011 = 10010 2. 01101 +101 =10010 3. 100110+ 11011 = 1000001

4. 10111 +00111=11110 5. 11011 + 1001 = 100100 6. 11101 + 101001 = 1000110

20

Unit 1

ANSWERS TO UNIT 1 EXERCISES (cont.)
Exercise 1-6: Subtraction of binary numbers Answers

1. 1011 -0011 = 1000 2. 1101 - 0101 = 1000 3. 101110-01011=100011
4. 10111 -00101 =10010 5. 11011 -1001 = 10010 6. 111101 — 101001 =10100
Exercise 1-7: Multiplication of binary numbers Answers

1. 1011 -0110 = 1000010 2. 0111-1000=111000

3. 1111 -0001 =1111 4. 101-1110=1000110

Exercise 1-8: Logic Functions Answers

1. What is the type of gate illustrated below? _3-input NAND Gate
2 Fill-in the associated truth table.

Truth Table

Output

=1
“

S Y S T [

b—Av—-hC)Oh—nn—-cou
ot A=l b B kel {=d L (=) [

¥ Inverting the inputs of a 2-input AND gate will change it into another the type of gate.

What type of gate will it effectively become? _2-input NOR Gate

4. Perform the AND function on the following binary numbers. Treating each column
separately as A and B inputs, AND them together to a C output.

A 10011100
B 10001101
C 10001100

21

Unit 1

ANSWERS TO UNIT 1 EXERCISES (cont.)

5. Perforrn Modulo-2 Addition (X-OR) on the following binary numbers—A and B.

A 10011100

B 10001101

C 00010001

6. Refer to the following logic gate.
How many input combinations will provide a high
output state? _1__
How many input combinations are possible for this
gate? _16
|

22

